

Genetic Algorithms and Gas Turbine Diagnostics

Optimization for Diagnostics

Gas turbine diagnostics as a searching or optimisation problem

Objective Function =
$$\sum_{i} \Phi(||z_{i} - h(x_{i})||)$$

Random search

Conventional optimization – Hill Climbing

Single peak, continuous function

Random search

Conventional optimization – Hill Climbing

Single peak, continuous function

Why choose Genetic Algorithm?

Discontinuous function

Multiple peak function

Genetic Algorithms

- A Genetic Algorithm (GA) is a search heuristic that mimics the process of natural selection.
- A GA generates solutions to optimization problems using techniques inspired by natural evolution, such as inheritance, mutation, selection and crossover.
- A GA requires a balance between exploiting the best solution and exploring the search space

CranfieldAerospace

A genetic algorithm follows a step-by-step procedure that closely matches the story of the rabbits.

- rabbit population
- individual rabbit
- genes
- faster & smarter
- breeding rabbits
- become faster and smarter

- String population
- Individuals: strings/chromosomes
- String elements: units(genes)
- Evaluation with "fitness"
- Produce next generation with GA operators
- Searching for the best

Genetic Algorithms

Five elements, five questions:

- 1. How to represent **GA** strings?
- 2. How to create an initial population?
- 3. How to evaluate the quality of GA strings?
- 4. How to <u>generate</u> new strings to improve the GA population?
- 5. How to choose the values of **GA** parameters

Representation of strings:

-- binary or real coded:

Real number ———— Binary number (2,8) (00,11)

Initial population -- random selection

Evaluation:

A fitness function is used to assess if the solution is "good" or "bad"

The fitness function is related to the objective function:

- always positive
- high value for better fitness

For example,

- to maximize an objective function

$$Fitness = ObjectiveFunction$$

- to minimize an objective function

$$Fitness = \frac{1}{1 + ObjectiveFunction}$$

Objective Functions:

$$J(x) = \sum_{i} \frac{\left|z_{j} - h_{j}(\vec{x})\right|}{\left|z_{ref} \cdot \sigma_{j}\right|}$$

Actual Parameters

Simulated Parameters

Delta Values

$$z = f(x, y)$$
 $z = 100 - (x-5)**2 - (y-5)**2$

To search a solution with z target = 100

Objective Function (errors) =
$$\frac{|z - 100|}{100}$$

$$Fitness = \frac{1}{1 + OF}$$

Example:

$$z = 100 - (6-5)**2 - (4-5)**2 = 98$$

Objective Function =
$$/98 - 100//100 = 0.02$$

$$Fitness = 1/(1+0.02) = 0.98$$

4. Three searching operations in GA:

Selection:

-- individual strings are copied for the next generation according to the values of their fitness

- Set a threshold
- Exclude strings with fitness lower than the threshold

Crossover: -- Randomly create new strings from current population

		Binary	Real
•	Parent 1:	XXX XXX	Num1
•	Parent 2:	YYY YYY	Num2
•	Child 1:	XXX YYY	Num1+Ran1*(Num2-Num1)
•	Child 2:	YYY XXX	Num1+Ran2*(Num2-Num1)

Mutation:

-- Randomly change the value of a string position in order to avoid losing some potential useful kind of strings

Cranfield Aerospace

GA – Key elements

5. Selection of GA parameters:

- Population size (such as 50 strings/individuals)
- Probability of crossover (such as 60%)
- Probability of mutation (such as 40%)
- Search space (such as [-0.5, 0.5])

Genetic Algorithms

Procedures for Genetic Algorithms:

- **1. Choose GA parameters** (population size, probabilities of GA operations, etc.)
- 2. Genetic representation of strings/individuals (real coded or binary)
- 3. Create initial population of solutions (random generation)
- 4. Evaluation of strings/individuals -> Fitness
- 5. Selection (based on "fitness")
- 6. Production of next generation with GA operations (crossover/mutation)
- 7. Check convergence criteria. If not converged, go to step 4.

Convergence criteria:

- Fitness > set threshold for the fitness
- Number of Generations > maximum number of generations

Genetic Algorithms

Distinctive features:

- No derivatives
- Constraints (penalty functions)
- Global search -- to avoid getting stuck at a local minimum
- Different from random search
- Different from conventional optimisation
- Probabilistic rather than deterministic for string generation
- Balance between exploiting the best solution and exploring the search space

A two-shaft turbofan engine

Engine instrumentation set

Parameter	Unit	Meanings
$N_{{\scriptscriptstyle HP}}$	%	Relative HP shaft speed
N_{LP}	%	Relative LP shaft speed
m_f	kg/s	Fuel flow rate
P_{t2}	kPa	HP compressor exit total pressure
T_{t2}	K	HP compressor exit total temperature
P_{t5}	kPa	LP turbine exit pressure
T_{t5}	K	LP turbine exit temperature

Objection Function:

$$OF = \sum_{i=1}^{N} \left| \frac{Z_{degraded,i} - Z_{model,i}}{Z_{degraded,i}} \right|$$

GA Fitness:

$$FITNESS = \frac{1}{1 + OF}$$

GA Parameter Selection

Population size: 100

Probability of crossover: 60%

Probability of mutation: 40%

Single component faults – fault cases

Search space: [-5.0 or 0.0, 5.0]

Assumed fault cases

Fault Class	Faulty Component	Component Parameters		Implanted Faults	
CFC1	IP compressor	$\eta_{\it IPC}$	Thermal efficiency		
		Γ_{IPC}	Flow capacity		
CFC2	HP compressor	$\eta_{{\scriptscriptstyle HPC}}$	Thermal efficiency	-2%	
	-	Γ_{HPC}	Flow capacity	-4%	
CFC3	Combustor	η_{b}	Combustion efficiency		
CFC4	HP turbine	$\eta_{{\scriptscriptstyle HPT}}$	Thermal efficiency	7	
		$\Gamma_{\!\scriptscriptstyle HPT}$	Flow capacity	†	
CFC5	LP turbine	$\eta_{{\scriptscriptstyle LPT}}$	Thermal efficiency		
]	$\Gamma_{\scriptscriptstyle LPT}$	Flow capacity	Ī	
CFC6	HP shaft bearings	$C_{{\scriptscriptstyle HPB}}$	Friction coefficient		
CFC7	LP shaft bearings	$C_{\it LPB}$	Friction coefficient	†	

Example of GA application

Diagnostic results with GA

Component	Component parameters & implanted fault	Search space	Search results		
Fault Cases (CFC)			Predicted degradation	Objective function	Fitness
CFC1	ΔηΙΡC ΔΓΙΡC	[-5% - 0%] [-5% - 0%]		2.174	0.315
CFC2	ΔηΗΡC -2% ΔΓΗΡC -4%	[-5% - 0%] [-5% - 0%]	-1.94% -3.86%	0.242	0.805
CFC3	$\Delta \eta b$	[-5% - 0%]		68.1	0.01
CFC4	ΔηΗΡΤ ΔΓΗΡΤ	[-5% - 0%] [-5% - +5%]		5.016	0.17
CFC5	ΔηLPT ΔΓLPT	[-5% - 0%] [-5% - +5%]		2.331	0.30
CFC6	СНРВ	[0-1.08]		6.010	0.14
CFC7	CLPB	[0-1.20]		4.673	0.17

Diagnostic results with GA

Objective Function:

Fitness:

